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A general  formulation  of  the  dynamical  problems  associ- 

ated with~powered flight  of  a  two-stage  flexible,  variable- 

mass  missile  with  internal  flow,  discrete  masses,  and  aero- 

dynamic  forces is presented.  The  formulation  comprises 

six  ordinary  differential  equations  for  the  rigid  body mo- 

tion,  3n  ordinary  differential  equations  for  the  n  discrete 

masses  and  three  partial  differential  equations  with  the 

appropriate  boundary  conditions  for  the  elastic  motion.  This 

set  of  equations  is  modified  to  represent  a  single  stage 

flexible,  variable-mass  missile  with  internal flow and  aero- 

dynamic  forces.  The  rigid-body  motion  consists  then  of  three 

translations  and  three  rotations,  whereas  the  elastic  motion 

is  defined  by one longitudinal  and  two  flexural  displacements, 

the  latter  about  two  orthogonal  transverse  axes.  The  dif- 

ferential  equations  are  nonlinear and, in  addition,  they  pos- 

sess  time-dependent  coefficients  due  to  the  mass  variation. 

The  complete  equations  cannot  be  solved  in  closed  form  and 

any  solution  must  be  obtained  numerically  by  means  of  a  high- 

speed  computer.  Several  cases  are  considered  as  examples. 



1. Introduction 

Investigations  of  the  behavior  of  a  rocket  in  flight 

can be  divided  for  the  most  part  into  two  major  classes  accor- 

ding to the  mathematical  models:  the  first is concerned  with 

rigid  missile  of  variable  mass  and  the  second  with  a  flexible 

missile of  constant  mass. 

The  treatment  of  the  missile  as  a  rigid-body  of  time- 

dependent  mass  has  been  adequately  covered  by  many  research- 

ers,  including  Grubin’*,  Dryer’,  and  Leitmann . The  ballistic 3 

trajectories  of  spin-  and  fin-stabilized  rigid  bodies  are 

treated  in  the  book  by  Davis,  Follin  and  Blitzer . 4 

A considerable  amount  of  effort  has  been  devoted  to 

the  analysis  of an elastic  body  subjected  to  longitudinal 

acceleration.  For  example,  Seide5  has  treated  the  effect 

of  both  a  compressive  and  a  tensile  force on the  frequencies 

and  mode  shapes  of  transverse  vibration  of  a  continuous  slen- 

der  body.  Others,  such as  Bea16,  have  been  concerned  with 

the  problem of buckling  instability  of  a  uniform  bar  subjected 

to an end  thrust as  well  as  with  the  change  in  the  body  nat- 

ural  frequencies  as  a  result of that  thrust.  These  investi- 

gations  regard  the  mass of the  body  as  constant  in  time. 

A series of reports  by  Miles,  Young,  and  Fowler7  offers 

a  comprehensive  treatment  of  a  wide  range  of  subjects  associated 

with  the  dynamics  of  missiles,  including  fuel  sloshing.  The 

* See  References  listed  at  end  of  this  work. 
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report  by  Keith, et. al.  also  covers  a  wide  range  of  sub- 

jects  associated  with  the  dynamics of missiles.  Again  the 

mass  variation is not  accounted  for. 

Attempts  have  been  made  to  consider  simultaneously  the 

mass  variation  and  missile  flexural  elasticity  by  investi- 

gators  such  as  Birnbaum’  and Edelen’’. Both  were  concerned 

with  solid-fuel  rockets  and  neither  of  them  includes  the 

axial  elasticity of  the  missile. On the  other  hand,  Price 

investigated  the  internal  flow  in  a  solid-fuel  rocket  and 

ignored  entirely  the  vehicle  motion. An  attempt  to  synthe- 

size  the  problem of rocket  dynamics  has  been  made  by  Meirovitch 

and  Wesley”. This  latter  work  accounts  for  the  mass  var- 

iation,  rigid-body  translation  and  rotation,  and  axial  and 

transverse  deformation,  but  it  assumes  the  motion  to  be 

planar,  which  excludes  spinning  rockets.  A  later  work  by 

11 

Meirovitch13  does  away  with  the  restriction  of  planar 

motion  and  considers  the  general  motion  of  a  variable-mass 

flexible  missile  in  vacuum.  A  report  by  Meirovitch  and 

Bankovskis15  uses  the  developments  of  References  13  and 14 

to  include  aerodynamic  effects. 

An  extension  by  Meirovitch  and  Bankovskis16  of  the  work 

reported in Reference 12  was  done  to  include  the  planar  motion 

of a two-stage  missile  in  which  the  first  stage was assumed 

to be  the  booster  while  the  second  was  used  to  house  packaged 

instruments.  The  missile was assumed  to  be  flexible  and  the 

first  stage  had  variable-mass. 
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The  present  work  represents  an  extension  of  Reference 

16  to  include  the  general  motion of a  two-stage  vehicle 

with  aerodynamic  forces. It also  includes  some  of  the  work 

reported in  Reference  14  with  additional  numerical  examples. 

2. Equations  of  Motion  for  a  General  Variable-Mass ~ ~. .~ . "_ System 

By  a  variable-mass  system we understand  a  system  of 

changing  composition. To examine  this  concept  more  closely, 

we  envision  a  control  volume  in  space  and  assume  that  the 

amount of  matter  within  the  control  volume  may  change  with 

time. Since  the  system  composition  changes,  it  is  not  proper 

to equate  the  time-derivative  of  the  sum  of  momenta  associ- 

ated  with  the  particles  to  the sum of  the  time  derivatives, 

because  the  summation  involves  different  sets  of  particles 

at  different  times.  In  this  case,  the  proper  procedure  for 

obtaining  the  equations  of  motion  is  to  write  the  force  equa- 

tion  in  the  form ,F = p , where  the  rate  of  change  of  the 

momentum, p, is  derived by  a  limiting  process  consisting of 

calculating  p  at  two  different  instants,  a  time  interval  At 

apart,  dividing  the  difference  of  the  two  values  by  At,  and 

' *  - 
I 

- 

letting  At + 0. In so doing,  we  ensure  that  the  same  total 

mass  is  involved,  although  at  one  time  it  is  entirely  inside 

the  control  volume  and  at  the  other  time  part  of  the  mass 

is  outside. 

* A wavy  line  under  the  symbol  denotes  a  vector  quantity  or 
operation. 
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We next-seek the  expression  for  the  time  rate of change 

of the  linear  momentum. To this  end we note  that  the  linear 

momentum  associated  with  an  element  of  fluid  is  pydu,  where 

p is  the  mass  per  unit  volume, v, the  velocity  and  du  the 
element  of  volume.  The  linear  momentum  of the fluid  con- 

tained  by  the  control  volume  at  any  instant t is  therefore 
f 

,P = Jcv - v p du 

From  Figure 1 we  see  that  at  time  t  the  system  occupies 

regions  I  and  I1  while  at  time  t+At  it  occupies  regions  I1 

and 111. The  time  rate of change of linear  momentum is then 

dt At+O At 

As At -+ 0 ,  the  volume I1 becomes  that  of  the  control  volume 

so that 

As At + 0, the  last  two  limits  can  be  seen  to  approach  the 

rate  of  efflux of linear  momentum  along ARB and  the  rate  of 

influx  of  linear  momentum  along ALB, respectively.  Thus,  the 

5 



last  two  limits  account  for  the  flow  of  linear  momentum 

across the  entire  control  surface  at  time t. With  the 

convention  of dA, pointing  outward  from  the  enclosed  region, 

we  see  that pv:d$ is  the  mass  efflux  through d; per  unit 

time  and  hence y(pv:dtf!) - is  the  efflux  of  the  linear  mom- 

entum  per  unit  time  through  dA.  On  integration  for  the 

whole  control  surface  we  conclude  that 

* 

c 

Hence we  are  lead to  the  expression  for  time  rate  of  change 

of  linear  momentum  as  (Reference 17, page 9 6 )  

in  which l& and FS are  the  resultants  of  the  surface  and 

body  forces,  respectively,  acting  upon  the  system. 
.A. 

Equation (51 ,  however,  applies  to  a  control  volume  at 

rest  in  an  inertial  reference  frame.  Under  consideration 

here  is a control  volume  which  is  translating  and  rotating 

relative  to  an  inertial  space.  Further  it  will  be  conven- 

ient  to  assume  that  part  of  the  matter  is  fixed  in  the  con- 

trol  volume,  while  part  of  it  moves  relative  to  it.  In 

order  to  find  the  expression  for  this  case,  consider  an 

element of mass  as  in  Figure 2 and write  the  force  equation 

in  the  form 

6 



in  which g is the  absolute  acceleration  of  the  mass  element 

dM, -ao is  the  acceleration  of  the  origin 0 of the  system 

x,y,z, w, is the  angular  velocity  vector  of  axes.x,y,z, and 

r is  the  position of dM relative  to  these  axes.  Upon  in- 

tegration  Eq. (6) becomes 
- 

If  we  assume  that  the  axes  x,y,z  are  fixed  in  inertial  space, 

Eq. ( 7 )  becomes 

where Mf is  the  mass  moving  relative  to  the  control  volume. 

Therefore,  from E q s .  (5) , (7 )  , and (8) we  conclude  that 

where  the  partial  derivative a/at is  to  be  calculated  by 

regarding  axes  x,y,z  as  fixed.  It  is  convenient  to  introduce 

the  following  equivalent  forces 
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c 

where zc is  recognized  as  the  Coriolis  force, F is  a  force 

due  to  the  unsteadiness  of  the  relative  motion,  and gR is 
referred  to as  a  reactive  force.  With  this  notation,  Eq. 

( 9 )  becomes 

-U 

The  terms  on  the  right  side  of Eq. (11) may  be  regarded as 

pertaining  to  a  rigid  body of instantaneous  mass  M. 

In  a  similar  manner,  the  torque  equation  about  the 

origin 0 can  be  written 

where 

- - - - a 5 rxv  dM 
FU at ..” 

M, 
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The  significance  of  the  various  torques  is  self-evident. 

Moreover, the  expression  for 5" can be  easily  explained 

by recalling  that a/at implies  a  time  rate  of  change  with 

axes  x,y,z  regarded  as  fixed. 

The  above  equations  must  be  supplemented  by  the  con- 

tinuity  equation 

which  expresses  the  fact  that  the  net  efflux  rate of mass 

across  the  control  surface  must  equal  the  rate  of  mass  de- 

crease  inside  the  control  volume. 

Equations (11) and  (12)  can  be  given  an  interesting 

physical  interpretation  by  recalling  that  the  system cam- 

prises  one  part  solid  and  another  part  of  changing  composi- 

tion,  and  observing  that  the  right  sides  of  these  equations 

represent  the  motion  of  the  system  as  if  it  were  rigid  in 

its  entirety.  Equations (11) and  (12)  can  be  regarded  as  the 

.. . 

equations  of  motion  of  a  fictitious  rigid  body  of,instantan- 

eous  mass M, provided  that  the  actual  surface  and  body  forces 

acting  upon  the  system  are  supplemented  by  three  equivalent 

forces,  namely  the  Coriolis  force,  the  force  due  to  the 

unsteadiness  of  the  relative  motion,  and  the  reactive  force. 

This  statement  is  sometimes  referred  to  as  the  "principle  of 

solidification  for a system  of  changing  composition"  (Ref- 

erence  18, p.  13). 
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3 .  The Rigid  Body  Equations  of  Motion 

The  formulation  of  the  preceding  section  is  ideally 

suited  for  treating  problems  associated  with  the  motion 

of  a  rocket.  We  consider  a  two-stage  missile,  and  of  the 

two  stages,  only  the  first  one  possesses  variable-mass, 

as it consists  of  a  solid-fuel  booster;  the  second  stage 

contains  no  charge  and  is  used  for  the  purpose  of  housing 

certain  measuring  instruments.  The  mathematical  model  of 

the  first  stage  is  assumed  to  comprise  a  long  cylindrical 

shell  open at the  aft  end  and  closed  at  the  fore  end. 

The  inner  part  of  the  missile  consists  of  the  propellant 

which  surrounds  a  cylindrical  cavity  whose  axis  coincides 

with  the  missile's  longitudinal  axis,  namely  axis x in 

Figure 3 .  The cavity  plays  the  role  of  the  combustion 

chamber,  as it contains  the  burned  gas  which-flows  relative 

to  the  shell  until  expelled  through  a  nozzle  .at  the  aft 

end.  The  second  stage  consists of a  flexible  missile  shell 

containing  attachment  points  for  instrument  'packages.  The 

effect  of  these  packages  is  felt  by  the  case  at  the  attach- 

ment  points  through  springs  and  dash  pots  used  to  connect 

the  packages  to  the  missile  shell.  This  mathematical  model 

is  more  representative  of  a  solid-fuel  rather  than  a  liquid- 

fuel  missile.  We  consider  first  the  case  in  which  the  missile 

shell  is  rigid. 

It will  prove  convenient  to  work  with  a  vehicle  first- 

stage  element  of  unit  length  comprising  the  missile  casing, 

10 



the  unburned  fuel,  and  the  hot ga'ses  flowing  relative to 

the  first  two,  and forthe second-stage  unit  element  compris- 

ing  the  missile  casing  and  the  discrete  masses  moving  rela- 

tive  to  it.  If we denote  the  motion  and  mass  associated 

with  the  case  by  the  subscript c, the  ones  related  to  the 

burned  fuel  by  the  subscript f, and  the  ones  related  to  the 

discrete  masses  by  the  subscript i, we write  in  analogy  with 

Eq. ( 7 )  the  force  equation  of  motion  for  the  rocket  element 

in  Figure 4 as 

+ 6 (x-xi)  [$o+ii+Zttyi + ,":zi + w x  (wxr.)] dm (15) 
Mi 

" "-1 

where zs and fg are  distributed  surface  and  body  forces  re- 
spectively,  v  is  the  fluid  velocity  relative  to  the  body 

axes, v. is  the  velocity  of  mass  Mi  relative  to  the  body  axes, 

and a. is  the  acceleration  of  the  origin 0 .  h(x-xo)  is a 

spatial  unit  step  function  applied  at  x = xo, 6 (x - xi)  is 

-f 

-1 

.- 

a  spatial  Dirac  delta  function  applied  at x = x while  a  and 

b are  the  distances  from  the  origin  to  the  aft  end  of  the  mis- 

sile  and  to  the  forward  end  of  the  first  stage,  respectively. 

i 
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Defining 

m = T~ + mf [h(x+a) - h(x-b)] + Mi 6 (x-xi) (16) 

and  considering  the  arguments  presented in proceeding  from 

Eq.  (7)  to Eq.  (91,  we may  write Eq.  (15)  in  the  form 

,s - - c  f + - f" + -fR ][h (x+a)  -h (x-b)] + 

dm + w x ( w ;  5 dm) -0 " - S, 
in  which 

L 

,fci = - Mi 2 w ~  vi 
" 

are  the  corresponding  equivalent  distributed  forces. 

Upon  integration  along  the  entire  missile, Eq.  (17) 

becomes 

where 

M = \  m d x  
L 
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With  the  definitions 

r = x , i  + y'j + z k , w = w x & +  w j + w,k (21) 
w - ..- " Y- - 

as  well  as  the  assumption  that  the  missile  possesses  rota- 

tional  symmetry  which  implies ydm = 1 zdm = 0, we  rewrite 
m m 

Eq. (19)  as 

In  analogy  with Eq. (12) we  write  the  moment  equation 

for  the  element of  Figure  4  as 

where cs and -nB are  torques  due  to  body  and  surface  forces, 
respectively,  and 

n + z R - -  -u - r x if dm 
" 

m4= L 
c 

n + ,nRi - - - r 2 M~ ii - Ui w 



Upon  integration  along  the  length of the  missile, Eq. 

(23) becomes 

where 

+ (-I zxwx - I  zywy + lZZWz)k - ( 2 6 )  

is  the  angular  momentum of the  "vehicle"  about  the  origin 0 

and i' is  the  rate of change of L due  to  the  change  in  the 
body  angular  velocity  relative  to  the  body  axes.  It is ob- 

tained by replacing  the  components of - w by the  components of 

h in Eq. ( 2 6 ) .  The  quantities 

c - 

- 
= (x 2 2  +z )dM , Izz = (x 2 2  +y )dM 

IXX M M 

I = J x y d M   , I x z = ~ M x z d M , I  = J  y z d M  
M yz M 

are  the  instantaneous  moments  and  products of inertia of the 

"vehicle"  about  the  body  axes. It is to  be  noted  that  in  the 

present  case  the  moments of inertia  are  time-dependent. 

14 
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There  remains  to  obtain  explicit  expressions  for  the 

actual  and  equivalent  forces  and  torques.  The  surface  con- 

sists  of  the  aerodynamic  forces on the  vehicle  wetted  area 

and  the  pressure  forces  across  the  exit  area.  Denoting  by 

-A f  the  aerodynamic  force  per  unit  of  the  wetted  area, Awl 

by pe  the  pressure  across  the  exit  area Ae, by pa  the  atmos- 

pheric  pressure,  the  surface  force  takes  the  form 

* 

Assuming  that  the  gravitational  field  is  uniform,  the  body 

force  is  simply 

where L is  the  length of the rocket,  m the  distributed  mass, 

and g  the  acceleration  due  to  gravity.  Assuming  the  internal 

flow  everywhere is along  the  x-axis,  with  the  possible  ex- 

ception  of  the  exit  point,  we  write 

" 

Moreover,  assuming  that  the  flow  across  the  cross-sectional 

area  is  uniform,  the  Coriolis  force  per  unit  length  can  be 

written 



rb 

where  use  has  been  made of the  continuity  equation,  namely 

b 
v m  f = - 5  i d g  

X 

Equation  (32)  results  from  the  continuity  equation,  Eq. (14), 

by considering  a  control  volume  from  a  point x to  the  end  of 

the  first  stage  of  the  vehicle.  In Eq. (321,  mf  denotes 

fluid  mass  per  unit  length  at  point x, b  is  the  distance  from 

the  origin of the  body  axis  along  the  x-axis  to  the  end of 

the  first  stage, is the  mass  rate of change  per  unit  length, 

and g is  a  dummy  variable  of  integration.  Upon  integration, 

Eq.  (31)  becomes 

Similarly,  the  force  per  unit  length  due  to  the  flow  unstead- 

iness  takes  the  form 

which  upon  integration  along  the  entire  missile  becomes 
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Finally,  the  reactive  force  per  unit  length may be  written 

as 

which  upon  integration  along  the  missile  length  becomes 

where  the  symbol  xe  indicates  that  the  quantity  vvmf  is  to 

be  evaluated  at  the  exit  point.  The  integrand  in Eq. ( 3 7 )  

can  be  easily  derived by assuming  one-dimensional  flow  along 

the  x-axis. It  will be  noticed  that  the  expression  makes 

allowance f o r  possible  abrupt  changes  in  the  flow  pattern, 

as  would  occur  if  the  rocket  engine  were  to  be  gimbaled  at 

a  certain  angle  with  respect to the  x-direction.  This is 

reflected  by  the  second  term  in  the  integrand.  Letting  the 

flow  direction  at  the  exit  be  defined  with  respect to axes 

x,y,z  by the  direction  cosines LxR, L L,~, respectively, 

and  using  the  continuity  equation,  Eq. ( 3 2 1 ,  the  reactive 

force  becomes 

.- 

YR' 



where fi represents  the  total  mass  rate  of  change  which  is 
a  negative  quantity. 

The  forces ,Fs and E& can  be  written  in  the  form 

where -FA denotes  the  aerodynamic  force 

;A = {A -A f* d  Aw 
W 

and zT is the  "engine  thrust" 

In an  analogous  manner,  the  torques  are  obtained  as 

!C = - 2 ( w  j + w k) 3 x(\ AdE) dx 
Y -  Z- 

L1 X 

in  which  rS  is  the  radius  vector  to  a  point  on  the  rocket 

surf  ace. 
- 



Using  the  various  forces 

Eqs. ( 2 2 )  and ( 2 5 )  become 

and torques  defined  above, 

+ 2 u x ii) 
*L- 

and 

2 w x ill 
c.” 



Next  let  us  introduce  the  notation 

for  the  velocity  of  the  origin  of  the  body  axes  and  write 

Eqs. ( 4 3 )  and ( 4 4 )  in component  from  as 

b 
+ (pe-pa)  Ae + Mg :i - a 1 ( \  r;l dg) dx 

L at 
L1 x 

MLC + Uwz - Ww, 
M 

F + M g - j - 2 w  AY " -  Z ( \  r;l dgldx + Ifilv(xe,t)a  R Y 
L1 x 



and 

Ixxwx - I - + I  ( w 2 - 0 )  2 
XY Ixzwz YZ Y 

+ I  ’ 2  2 
- Ixywx  YY wY - IYZGZ + Ixz(wx - w z )  

+ I ( w  - wx) Ixzwx - I yzwy + Izzwz XY Y 
2  2 - 

+ (Iyy - Ixx)w w + w z  (wyIxz X Y  wxlyz) = NAz 
- 

+ a l f i l  v (xe, t) gyR - 5 Mixi (uyi+2wz;xi-2w x G .  zi ) 
i 

21 



where w e  u s e d   t h e   d e f i n i t i o n s  

In t roduce   t he  set of convent iona l   no ta t ion  shown i n  Fig- 

u r e  5, where XYZ are a set  of i n e r t i a l   a x e s   w i t h  2 p o i n t i n g  

downward. Next w e  cons ider  a r o t a t i o n  $ abou t   ax i s  Z t o  

o b t a i n   t h e  set zlylzl(yaw), a r o t a t i o n  e abou t   t he  y1 a x i s   t o  

o b t a i n   t h e  set  x 2 y 2 z 2   ( p i t c h ) ,  and a r o t a t i o n  $ abou t   t he  x2 

a x i s   t o   o b t a i n   t h e  set  xyz ( r a l l ) .  Using   the   no ta t ion   cos$  

= c $ ,   s i n $  = S $ I ,  e t c . ,   t h e   r e l a t i o n s h i p s   b e t w e e n   t h e   i n e r t i a l  

and  the moving coord ina te   sys tems  a re  

i = cec$ i '  + ces$ j '  - sek '  - L c c 

k = ( c$sec$+s$s$ )   i ' + (c$ses$ - s$c$)  j '+c$cek '  
h - ., - 
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Moreover,  the  angular  velocities.,  in  terms of the  rate  of 

change  of 4 ,  e ,  $ are 

*X = $ - $ s e  

w = ic4 + jlces4 

w z  = - i s +  + $cec+ 
Y (50) 

while  the  velocity of the  origin 0 has  the  following  compon- 

ents  along  the  inertial  axes 

Equations ( 4 6 ) ,  ( 4 7 1 ,  ( 5 0 )  and (51) are  sufficient to define 

the  position  and  orientation  of  the  missile  as  a  function  of 

time . 
Under  certain  assumptions Eqs. ( 4 6 )  and ( 4 7 )  can  be  simp- 

lified  appreciably.  Let  us  assume  that x,  y, and z are  prin- 

cipal  axes  and  the  missile  is  symmetric  such  that I = Izz. 

Also assume  that  the  internal flow is  steady  and  that  the  mis- 

sile is not  controlled,  which  implies  that RxR = 1, gYR - - R~~ 

= 0, then Eqs. ( 4 6 )  and ( 4 7 )  becomes 

YY 

-Mgse + ]klv(xe  ,t) - Mi  (uxi  +2wyuzi-2wz;yi) 
i 



Y - (;y-~xwz) kdM = FAz + Mgc$c0 

and 

'xx wx = NAx 

I yywy + (Ixx-I yy) w x W z  = N AY - 2 w  Y 1 ~ ( \ I ~ r b d C ) d x  
L 
1 

+ gc8c@ LxdM + y M . x .  1 1 (i zi +2wxiyi-2w  y xi ) 

+ gcBs$ (MxdM - 2 Mixi (Uyi+20z;xi-2w ; ) 
i x zi 

(53a) 

(53b) 

(53c) 

in which we used the  fact  that 
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The  equations  of  motion  for  the  discrete  masses  may  be 

written  as 

i = 1,2, --- I n  ( 5 5 )  

where Tsi and ZTBi are  the  surface  and  body  forces  acting  upon 

the  ith  discrete  mass,  Mi,  whose  total  number  is n, and ci 
is the  absolute  acceleration  of  the  ith  mass.  With  the  de- 

f  initions 

-i r = (x.+u )i + (yi+uyi)> + (z.+uzi)k 
1 xi - 1 ( 5 6 )  

I 

as  the  position of the  ith  mass  relative  to  the  body  axes, 

we  obtain 

as  the  acceleration  of  the  mass  Mi. xilyilz are  fixed  co- 

ordinates  defining  the  position  of  mass  Mi  while  uxi,uyiluzi 

are  displacements  relative  to  this  position.  In  subsequent 

i 

use  yi  and  zi  will  usually  be  assumed  to  be  zero. 

Denoting  by  kxi,kyi,kzi,  the  stiffness  of  the  springs 

used  to  attach  the  masses  to  the  case,  and  by cxil cyi, C ., 

the  associated  damping  coefficient  in  the  x,y,z  directions 

respectively,  the  surface  force  on  the  ith  discrete  mass  takes 

the  form 



while  the  body  force is simply 

using  the  above  definitions  for  the  forces,  the  equa- 

tions  for  the  discrete  mass  motion  become  in  component  form 

- ; u +w w u - (Xi+UXi) ( w  2 2  +uz 1 + wxwzuzi] = 
z yi x y yi Y 

Mig.i - k .u - c  u - - -  x1  xi  xi  xi 

M.g-j - k .u - c  u 
1"- Yl Yi yi  yi 
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Mig*k - k u - c -- L zi  zi zi'zi (60~) 

Since  the  discrete  masses  are  assumed  to  be  point  masses, 

there  are no torque  equations  for  them. 

4 .  The  Equations  of  Motion  of  a  Flexible  Rocket 

When  the  rocket  casing  can  undergo  elastic  deformations, 

the  problem  requires  further  attention.  To  this  end,  consider 

a  rocket  translating  and  rotating  relative  to  the  inertial 

space  x,y,z,  as  shown  in  Figure 3 .  As the  control  volume, 

we  consider  the  volume  occupied  by  a  rocket  element  of  unit 

length  when  the  vehicle  is  at  rest  relative  to  the  body  axes 

x,y,z.  Figure 4 shows  the  corresponding  element.  Because 

the  rocket  shell  is  elastic,  the  entire  mass  associated  with 

the  control  volume  in  question  can  move  relative  to  that  vol- 

ume.  In the  first  stage,  the  rocket  case and  unburned  fuel 

are  assumed  to  more  together  and  their  motion  is  different 

from  the  motion  of  the  burned  fuel,  while  for  the  second  stage 

the  motion  of  the  shell is  different  from  the  motion  of  the 

discrete  masses.  Therefore,  it  will  prove  convenient to de- 

note  the  motions  and  mass  associated  with the  case  element by 



the  subscript c, the  ones  related to the  burned  fuel  ele- 

ment  by  the  subscript f, and  the ones  related  to  the  dis- 

crete  masses  by  the  subscript i. In analogy  with Eq. (7) 

and Eq. (151,  we  write  the  force  equation  of  motion  in  the 

form 

where  vc is the  elastic  motion  of  a  point  inside  the  case 

element, ,v is  the  fluid  velocity  relative  to  the  body  axes, 

and v. is  the  velocity  of  the  ith  discrete  mass  relative  to 

the  body  axes.  It  will  be  assumed  that  the  elastic  motion 

is  the  same  for  the  entire  case  element  and  a  similar  state- 

ment  can  be  made  concerning  the  velocity  of  the  fluid  element. 

Introducing  the  notation 

- 
f 

-1 

where  u  represents  the  elastic  displacement  vector,  v  the 

velocity of the  fluid  relative  to  the  case,  and ii the  vel- 
ocity  of  the  ith  discrete  mass  relative  to  the  case,  we  can 

rewrite Eq. (61)  as 

.c I 
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+ [h(x+a)-h(x-b$ 5 ($ + 2wxv)  dm 
mf 

CL "- 
c 

+ 6 (x-xi) \ [ ii + 2wx;. W.""l. ]dm = (a -0 + u - 
Mi 

+ 1 h(x+a) - h(x-b)j (G - + 2wxv) C" mf + (ui - 

+ 2wx;.)Mi - 5 -1 6 (x-x~) 

Moreover?  the  radius  vector 5 has  the  expression 

+ (fCi+fUi+gRi)G (x-xi) 1 -  " 



where  a  is  the  absolute  acceleration  consisting of the - 
acceleration a. of the  origin  and  the  acceleration of the 

case  element  relative  to  the  body  axes.  Moreover 
- 

f c  - - -  2 w x  vmf 
" - 

are  the  Coriolis  force,  the  force  due  to  the  unsteadiness of 

the  fluid  relative  to  the  case,  and  the  reactive  force,  res- 

pectively,  all  per  unit  length of.the rocket.  Similarly 

If we  express Eo in  terms  of  components  along  axes x, y ,  

z, then  the  position  of  the  case  element  at  any  time  is  given 

= ( X  + x + ux)i + - (Y + Y + U*)i + 

Recalling  that  the  unit  vectors i, j, and  k  rotate  with  ang- 

ular  velocity w ,  the  absolute  acceleration of the  case  element 
- L  - 

c 



can be written in the form 

a = ax& + a j + az, Y- 

where 

In 



In  the  above  expressions  the y and. z coordinates  may  be 

considered as  offsets  such  as  may  result  from  the  missile 

not  being  perfectly  symmetrical  about  the  x-axis. In  sub- 

sequent  use we will  assume  them  to  be  zero.  In  addition, 

the  assumption  that  a  given  cross-section  is  uniform is 

made. 

Similarly,  using Eq. (631, the  torque  equation  about 

the  point 0 for  the  rocket  element  in  question  takes  the 

form 

+ [h (x+a) -h(x-b)l[  rx  (;+2wxv)  dm 
m ." "- 
f 

+ 6 (x-xi)  rx  (U.+2wx;. ) dm = 
I - -1 - "1 

Mi 

rx  (a  +u+2wx;) dm + + ~ X R  ...* - 0  - "I ..- "- m 

+ [h(x+a)-h(x-b)] [ rx  (;+2~xv)  dm 
m " - "I 

f 



where 

R = (Ixxwx -i xywy-=xz * w 2 )i+(-i - w +i w -i w )j .- YX x YY Y YZ 2 - 

is  the  angular  momentum of the  mass  element m about  the  body 

axes x,y, z ,  in  which 

are  recognized  as  the  associated  moments  and  products of in- 

ertia.  Moreover El is obtained  from Eq. (72)  by  replacing 

axrw t u z t  bY ~ ~ t w ~ r w ~ ~  
. . .  

respectively. Eq. (71)  can,  be  rewritten Y 
as 

Z S  
h (x+a)  -h  (x-b) + (~ci+~ui+~Ri) 6 (x-xi) 



where  the  torques 

zR - - - lmf a (vpf)+A (vynf) 6 (x+a) 

and 

follow directly  from Eqs. (66 )  and ( 6 7 )  respectively. 

Equations (65)  and (74) must be  supplemented  by  the 

continuity  equation, Eq. (32) . 

5. The  Equations for  the Axial and  Transverse  Vibration 

of a Rocket 

Let us consider  the  rocket of the  preceding  section  in 

which ux is  the  axial  elastic  displacement  and  u  and  uz  are 

the  elastic  transverse  displacements  in  the  y  and z directions, 

respectively.  Assuming  axial  symmetry  and  that  the  elastic 

Y 

displacements ux,uy,uz and  the  angular  velocity  components 



wy I wz I as  well  as  their 

ities, we can  integrate 

time  derivatives  are  small  quant- 

Eqs. (65)  and (74) and  obtain 

P 

in  which sr is  the  rigid  body  position.  relative  to  the  body 
axes  as  defined  by  Eq. (21) . Also 

Comparing  Eqs. (19) and (77)  on  the  one hand, and  Eqs.  (25) 

and (78)  on the  other  hand,  we  conclude  that  the  elastic  mo- 

tion  does not  affect  the  rigid-body  motions  provided  the 

following  relations  are  satisfied 
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iL ,u m dx = ( i m d x =   z m d x = O  
L 

xu  m dx = lL i m d x = {   x u m d x = O  
L Y  

(79) 

xu m dx = 5 . i Z m  dx = 5 xuzm dx = 0 
L L 

We  assume  that  this  is  the  case,  and  indeed  Eqs.  (79)  imply 

that  the  elastic  modes  of  deformation  are  orthogonal,  with 

respect  to  the  modified mass, to  the  rigid-body  modes  of 

displacement,  namely  the  translation  and  rotation  of  the  ve- 

hicle  as  a  whole.  In  view of the  above  arguments  the  problem 

can be  solved  in  two  stages. First, the  rigid-body  motion 

can  be  solved  for  using  Eqs. (19) and  (251,  then  considering 

these  as known, Eqs . (65  and  (74  may  be  used  to  obtain  the 
elastic  motion. 

Equations  (65) , (66)  and  (671,  representing  the  equations 
of motion  for  the  three  components  ux,u  ,uz  of  the  elastic 

displacement u, are of a general  form  and,  before we can  at- 

tempt  their  solution,  we  must  specify  the  nature  of  the  sur- 

face  forces fs and  the  body  force ,fB. The surface  force  de- 

pends not only  on  the  external  aerodynamic  forces,  but  also 

on internal  stresses  in  the  shell  and  fluid  pressure.  More- 

over,  the  fluid  flow  characteristics  must  be known, as  can  be 

concluded  from  Eqs.  (66),  as  well  as  the  discrete  mass  motion, 

as  can  be  seen  from  Eqs . (67) . 

Y 

- 

.I 

- 



As  far  as  the  elastic  motion  is  concerned,  the  vehicle 

shell  is  assumed  to  behave  like  a  bar  in  axial  and  flexural 

vibration.  Under  these  circumstances,  the  distributed  sur- 

face  force  can  be  written  in  the  form 

+ pAf  (a) 6 (x+a)][ h(x+a)-h(x-b)] - i + fAxi+f  AY j+fAz,. k 

where  the  first  three  terms  represent  the  force  components 

due  to  internal  stresses  caused  by  the  axial  and  flexural 

vibrations  (see,  for  example,  Reference 19, Sections 5-7 and 

10-3),  the  fourth  term is  due to  internal  fluid  pressure  dif- 

ferential,  the  next  three  terms  are  due  to  aerodynamic  effects, 

while  the  last  term  is  due  to  pressure  difference  at  the  aft 

end  of  the  missile.  The  term P denotes  the  axial  force on 

the  vehicle due  to  internal  stresses  and  has  the  expression 

a ux 
c ax P = E A  - 
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Finally,  the  differential  equation  for  the  flexural 

vibration  in  the  xz-plane  is 

2 2  - (i -wxwz) (x+ux) - (wx+w 1 uz Y Y 1 
with  the  boundary  conditions 

a a L ~ Z  
ax - - (EIcy - 2 )  = 0 at x = - a,b+L2 

ax 

At  this  point a discussion of some  additional  assumptions 

implied  by  Eqs. (83) through ( 8 8 )  is  in  order.  First  we  note 

that  the  aerodynamic  forces  are  treated  as  distributed  forces 

causing no torques  on  the  case  element.  Such  torques,  if 

they  exist,  are  assumed  to  affect  only  the  rocket  rigid-body 

rotation.  Although  the  nozzle  has  finite  length, it was  assu- 

med,  for  simplicity,  to  be  of  negligible  length.  In  a  more 

exact  treatment of the  gas  flow,  this  assumption  may  have  to 
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be  relaxed  by  considering  the  pressure  distribution  along 

the  finite-length  nozzle  (see  Appendix A). 

The  flow  has  been  treated  as  if  it  possessed no vis- 

cosity.  As a result, any  reactions  between  the  gases  and 

the  unburned  fuel  are  assumed  to  be  normal  to  the  flow. 

This  is  implied  by  the fact  that  the  velocity  is  uniform 

over  the  entire  cross-sectional  area  which  implies,  in 

turn,  perfect  burning  in  the  sense  that  no  gas-dynamic 

eccentricity  is  present. The lack  of  gas-dynamic  eccen- 

tricity  is  ensured  by  any  type  of  radially  symmetric  flow, 

of  which  the  uniform  flow  is a special case.  Any  torques 

due  to  gas  flow  may  result  from  engine  thrust  misalignment, 

if at all. Moreover,  the  velocity  of  the flow  relative  to 

the  body  is  assumed to have  only one  component,  namely  along 

the  x-axis.  Although due  to the  transverse  elastic  displace- 

ments u and uz, there  are  velocity  components  vau /ax  and 
Y  Y 

vauz/ax  in the y- and  z-directions,  respectively,  the  terms 

involved  are  assumed  to  be  small  and,  therefore,  ignored. 

6. Distributed  Aerodynamic  Forces 

Before a solution  for  the  motion of the  missile  can  be 

attempted, we must  determine  the  distribution of the  aero- 

dynamic  forces  along  the  missile. To obtain  the  transverse 

forces, we  use  the  method of virtual  masses,  whereas  the  ax- 

ial forces  are  obtained  by  semi-empirical  means.  The  latter 

forces  are  assumed  to  act at  several  discrete  stations  of 

the  missile. 



The  method of virtual,  or  apparent  mass  can  be  traced 

to Lamb2'. The  method  was  extended  by  Munk21  and  Jones 

and  applied  to  missiles  by  Bryson . The  present  deriva- 

tion  represents  an  extension  of  the  method  and  reduces  to 

the results  of  References 24, 25,  and  26  if  suitable  simp- 

lifications  and  assumptions  are  made. 

22 

23 

Consider  a  missile  moving  through  an  infinite  expanse 

of  fluid  which is stationary  at  infinity.  With  the  coordi- 

nate  system  shown  in  Figure 6, consider  a  set  of  axes  xlylzi, 

displaced  relative  to xyz by 

r = (x+u  )i + u j + uzk (89) ..- x -  Y- 

where  i,j,k  are  unit  vectors  along  axes  xyz.  The  xlylzl 

axes  are  such  that  the  x1 = 0 plane  is  a  plane at  rest  with 
" - 

respect  to  the 

the  xl-axis  is 

consideration. 

fluid  far  away  from  the  body  and  such  that 

parallel  to  the  x-axis at the- instant  under 

Next  consider  the  element of unit  length  shown  in  Figure 

6, and  define  the  translational  velocity  of  this  element,  ex- 

pressed  in  terms  of  components  along  the  coordinate  system 

with  origin  at 0, by 

x1 = u  i + vlj + wl& 1- - 



Then  the  linear  momentum  of  the  element  expressed  in  terms 

of the  same  set of axes  can  be  written  as 

in  which 

u = u + l i x + w u  - w u  

v = v + li + wz(x+ux! - wxuz 

w = w + l i z + o u  - w (x+ux) 

1 Y =  Z Y  

1 Y 

1 X Y  Y 

and 

m = p S (x) 
V (93 1 

where p is  the  free  stream  density  and S is  the  cross-sect- 

ional  area. The  distributed  force  acting  on  the  missile  is 

then 

dP 
fA = f i + f j + fAzk_= - - - Ax- Ay- dt 

- (94) 

As the  axial  component  for  the  distributed  forces  is 

derived by a different  method, we only  consider  the  derivation 

for  the  transverse  components.  Considering Eqs. (91)  and (92) ,  

we  can  write  the  components  for  the  linear  momentum  in  the 
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functional f o m  

The  total  time  derivative  of Eq.  (95)  is  then 

dpi api dx + api dy + _ _ _  aPi dm v 
dt ax dt ay dt 
- = - -  + - -  

am, dt 

Introducing Eq.  (92)  into Eq.  (911, using E q s .  (961, and  re- 

calling  that  the  unit  vectors  i,j,k  are  rotating,  the  trans- 

verse  components  in Eq. (94)  become 

f = - mv a - [V + cy + wz(x+ux)-w u 3 - mv [U + kX 
AY Y V x z  

- au  au 
+ w u - w,uy][$ + w 2 - w - w -]-P[u a uX 

Y Z  X ax Y Y ax 

(97) 

+ u  X 



where  a  and aZ  are  given by Eqs. (70). 
Y 

In the  above  expressions S(x) represents  an  area  in  a 

plane  perpendicular  to  the  elastic  axis.  For  a  circular  se- 

gment  this  area  is 

fn  which  r(x) is the  radius.  For  a  segment  that  has fins,  the 

equivalent  area  is  represented  by  the  expression 

r 2 r  4 
s (x) = IT s2 (1 - 2 
eq + -$ 

S S 
(100) 

in  which s is the  distance  from  the  elastic  line  of  the  missile 

to  the  tip  of  the  fins in  the  cross-flow  plane. 

The  axial  aerodynamic  force  per  unit  length,  fAx , is  de- 
fined  as 

fAX = - 'r cx 

in  which q is the  free  stream  dynamic  pressure 

1 -  
q = 7 P Eo:&) 

(101) 



and  cx  is  the  axial  coefficient,  which  in  general  depends  on 

the  local  angle of attack,  local  sideslip  angle,  and  local 

Mach  number.  However, we shall  assume  that it is only  a 

function  of  the  Mach  number  and  that it acts  at  discrete  sta- 

tions  along  the  missile.  These  stations  are  generally  located 

at  points  where  there  are  changes  in  the  cross-sectional  area, 

such  as  at  the  forward  end  and  the  aft  end of the  missile,  where 

the  fins  are  located,  as  well  as  the  stage  intersection.  Base 

pressure  also  acts at the  aft  end  of  the  missile.  Viscous 

forces  due  to  friction  are  neglected.  Hence,  we  can  write  Eq. 

(101)  as 

where  6(x-x.)  is  a  spatial  Dirac  delta  function  and  Ma  is  the 

Mach  number. 
1 

7. Equations of Motion  for  a  Flexible  Two-Stage  Missile  with 

Discrete  Masses  and  Aerodynamic  Forces 

This  section  concludes  the  analysis  of  a  two-stage  missile 

with  internal  flow  including  discrete  masses  and  aerodynamic 

forces.  Subsequent  sections  will  include  simplified  equations 

and  computer  solutions.  The  resulting  equations  in  this  sec- 

tion  are  such  that  no  closed  form  solution  appears  possible  and 

numerical  methods  are  called  for. 
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As indicated  by Eqs. (52) for the  rigid-body  motion, we 

need  expressions for the  aerodynamic  forces.  These  are  found 

from E q s .  (97) and (98) . For  no  elastic  deformation  they  re- 

duce  to 

w (W-xu 1 - UP (V+xwz) - +"v x Y  dx 
dS (104) 

fAZ = - m (&x; - r;l (w-xw + mvUw 
V Y V Y Y 

- m w (v+xwZ) + m w u - UP (W-XW 1 - dS 
v x  V Y  Y  dx (105) 

The body  axes are  taken to be at the end of the  missile  such 

that  a = 0, b = L Before  integration  can  be  performed,  some 

description of the  cross-sectional  area  is  necessary.  We  assu- 

me  that  each  stage  has  a  constant  cross-section  and  changes 

only  occur  at  the  intersection  of  the  two  stages.  The  fin  area 

at the  aft  end  is  considered as  a  spatial  impulse  and  the  nose 

is assumed  to  be  pointed  such  that S ( L )  = 0. Under  these  cir- 

cumstances  the  cross-sectional  area  distribution  becomes 

1' 

S (X) = S (0) 6 (X) + SI [h (X) -h(x-L1) 1 + As 6 (x-L1) 

+ S2 [h (x-L1) - h(X-L) I (106) 
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where S ( 0 )  is the  fin  cross-sectional  area  at  the  base,  S1 

and S are  the  cross-sectional  areas  (assumed  constant), of 

the  first  and  second  stages,  respectively, AS is  the  average 

cross-section  at  the  intersection  of  the  two  stages.  With 

this  definition  for  the  cross-sectional  area,  the  integration 

of Eqs. (105) and (106) produces 

2 

in  which 

A1 = S (0)ho + S L + AS h2 + S2L2 1 1  

A2 - - + AS Llh2 + - - 
2 2 

A3 = S ( 0 )  

(109) 

and ho, h are  incremental  distances  along  the  x-axis  on  which 

the  areas S ( 0 )  and AS are  assumed to be  present.  The  axial 

force  is  simply  found by integration of Eq. (103), which  results 

in 

2 
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With  the  definition 

- S  
r = x i  

the  aerodynamic  torques  are  found to be 

+ V p’ A2 + U w z  p A2 - UVp A4 

in which 

I 

- S L + ASL h + $ S2Lz 3 2 
A 5 - 5  1 1  1 2  
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It may  be  noted  that  there is  no  torque  produced  about  the 

longitudinal  axis of the  missile  by  the  aerodynamic  forces, 

and  this  needs  further  clarification.  Physically  it  may  be 

assumed  that  there  are  control  systems  to  maintain  the  mis- 

sileunder  a  steady  rolling  velocity  and  therefore  cancel  any 

aerodynamic  forces  that  are  produced  about  the  x-axis.  Math- 

ematically  the  torque  vanishes  because  the  missile  was  assumed 

to  have  negligible  width. 

With  the  above  definitions  for  the  rigid-body  aerodynamic 

forces, Eqs. (52 )  for  the  rigid-body  translation  become 

M[6 + Wwy - Vuz 
Y 

xdm = - 2 q  Srcx (Ma,x. 1 
7 

j 

+ (Pe - pa)Ae - Mg so + l f i l  v(xe,t) - 2 Mi[uxi 
i 

y zi 

- Mi (Uyi + 2wZixi - 2wxGzi ) 
i 

(116) 



- 2 Mi(uzi + 2wxiyi - 2 ~ ~ ; ~ ~ )  
i 

in  which 

* 
M = pA1 + M * 

I M1 = p A 2  + 1 xdM 
M 

(119). 

Consistent  with  the  assumption of .negligible width,  such 

that Ixx/I <<1, and  using  the  aerodynamic  torques  defined 

above, the,torque equations  become 
YY 

Ixx w = 0 X 

+ $ A 2 +  Uw p A 2  + UWpA5 - 2 w  1 x(rl AdE) dx Y  Y 
L1 

X 

+ gcec4 IM xdM + 2 M.x. (u 
1 1 zi + 2wx;lyi - 2w li ) (121) 

i y  xi 



where 

I = pA5 + I * 
YY YY 

The  discrete  mass  motion is described  by Eqs. (60) and 

repeated  here as 

Mi + Wwy - Vuz + U xi + 2wyuzi - 2w u z yi 

+ w o u  = Mi g i - kxi uxi x z zi - - -  

- c  u xi xi (124a) 



+ Uw, - w w x  + u + 2wzuxi - 2wxlizi Yi 

+ u  2 + ; (x. +UXi) - ;xuzi ziwywz - u (w2, + wx) 
2 1  Yi 

= M i g - j - k . u  
U "  Yl Yi 

(124b) 

Mi ~ ~ + v w x - u w  + u  
z i  + 2wxilyi - 2w u 

Y y xi 

+ ;,uyi - ; (Xi  + u 1 + wxwz(xi + U X i )  
Y x i  

- (w;+w) 2 u z i + w w u  Y Y z Yi 
= M i  g k - I- 

- k z i  uZi - C , ~  uZi (124~) 

Finally,  using  the  distributed  aerodynamic  forces  from 

Eqs. (97), (98) and (103), the  equation of motion  for  the  axial 

elastic  motion  become 



s .ubject   to   the  boundary  condi t ions 

a uX 
EA, ax - - 0 a t  x = 0 , L  

while   those f o r  the  t ransverse  motion  take  the  form 

( 1 2 6 )  

a 
ax  ax 

2 a au 
- -  

2 
- y ) + - - ( P ~ ) - m [ u + ; ~ + o u  ax  ax V 

2 Y Z  

a uX 
au 

+ w  " z ax x ax Y Z  

- w u ] [v + Gy + w2(x+ux) - wxuz 1 g. - lil [v + li 
Z Y  V Y 

s u b j e c t   t o   t h e  boundary  conditions 
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I, 

2 a u  

ax 
E I ~ ~  3 = o a t  x = O,L 

n 

a 
ax 

a 5.1 
ax 

- - ( E I ~ ~  +I = o a t  x = O , L  

and 
CI 

with the boundary  conditions 

2 
a uz  

ax 
" a ( E 1  - ax 2) = 0 a t  x = 0 , L .  
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In Eqs.  (127)  and  (129) we introduced  the  notation  m* = 

m + m .  
V 

Equations  (116)  through  (130)  must  be  solved in conjunc- 

tion  with  the  appropriate  initial  conditions  to  obtain  the 

rigid-body  motion,  the  motion of the  discrete  masses,  and  the 

elastic  displacements. The equations  are  coupled  and  nonlinear, 

so that  no  closed  form  solution  appears  possible.  Hence,  num- 

erical  methods,  such  as  used  in  Reference 16, are  indicated. 

8. Axially  Symmetric,  Spinning  Single-Stage  Missile 

The  previous  section  considered  a  two-stage  missile  whose 

characteristics  were  different  in  each  stage.  Not  only  are 

their  stiffnesses  and  mass  distributions  different,  but  there 

is  variable  mass  in  the  first  stage,  while  it  is  constant  in 

the  second. As a  result,  the  center  of  mass  moves  along  the 

missile  axis  with  time. 

As  a  special  case,  we  wish  to  consider  a  slender  single 

stage  uniform  missile  as  shown  in  Figure 7, where  the  missile 

is  subject  to  the  following  assumptions: (1) the  nose  and  fins 

are  short  in  comparison  to  the  total  length  of  the  missile, so 

that  the  transverse  aerodynamic  forces  associated  with  the  nose 

and  fins  can  be  regarded  as  acting at the  ends  of  the  missile; 

( 2 )  the  axial  aerodynamic  forces  act  only on nose  and  fins, 

where  the  nose  has  the  shape  of  a  cone; ( 3 )  the  missile  is 

unguided  and  the  thrust  is  directed  along  the  x-axis at all 

times : and ( 4 )  the  internal  flow  is  steady. 



As a result.of the  first  two  assumptions,  the  effect  of 

aerodynamic,  forces on the  nose  and  fins  of  the  missile  can  be 

expressed  in  the  form  of  boundary  conditions.  From  the  third 

assumption  it  follows  that  the  direction  cosines  have  the  values 

RxR - - 1, RYR - - RZR = 0. As  a  result of the  fourth  assumption, 

we conclude  from  Reference  13  that  the  internal  flow  satisfies 

the  equation 

Since  the  nose  and  fins  are  assumed  to  be  short,  the  missile 

is  regarded  as  being  uniform, so that  it  proves  convenient  to 

choose.the origin of the  moving  coordinates  system  xyz  at  the 

center of the  missile,  from  which  it  follows  that a = b = L/2. 

This  leads  to  the  expression  for  the  pressure  distribution  as 

For  uniform  burning, Eq. ( 3 2 )  yields the  relation 

where  moB = - & = constant  is  the  uniform  rate  of  mass  burning 

per unit length.  Substituting Eq. (133)  into  (132)  results  in 
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We  next  rederive  expressions  for  the  rigid-body  aerodynamic 

forces.  From  Eqs. (92) we obtain 

u = u, v1 = v + xuz, w = w - xw 1  1 Y 

so that  Eqs . (97)  and ( 9 8  become 

f = - m (+ + xuz) - I;I (v + xuz) - m uuZ 
AY V V V 

- m UwZ+m w (w-xu )-UP (V+xuZ) dx dS 
V v x  Y 

(135) 

Integrate  Eqs.  (1031,  (1361,  and  (137)  along  the  missile 

length  use  the fact  that  the  forward  end  is  pointed  such  that 

S (L/2) = 0, and  obtain 



I 

L/2 

 FA^ = \ Az f dx = - Mv\fi + Vux - Uw 1 + M w U - SOW 
-L/2 Y V Y  

+ WPS-L/2 + upw Y L/2 s1 

in  which 

Mv = mvL 

S-L/2 = S(-L/2) 

s1 = S(-L/2) - - L S(x)  dx 
-L/ 2 

(143) 

and  n  is the  number  of  stations  at  which  axial  forces  are assumed 

to act. 

The rigid-body  aerodynamic  torques  are  found  from  the  first 

of Eqs . (42)  where 

* s  r = x i  
c 
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The  resulting  expressions  are 

NAx = 0 

3 
NAz - - - h L  3 

- mvL . V 12 s1 + upw ( w z + w  w 1 -  - w - w p  7 12 X Y  12 z  z 4 s2 

in  which 

s2 = S(-L/2) + 2 8 1"'" x S ( x )  dx 
L  -L/2 

With  the  above  expressions  for  the  aerodynamic  forces  and 

torques,  the  rigid-body  equations  of  motion,  Eqs.  (52)  and  (53) 

become 

M*[+UuZ-Wwx]= - MvwzU-fivV+Wp S -L/ 2 + Mgs@cB - UwzpL/2 S1 

M* [i+Vwx - Uw 1 = M w U-fivW+UWp S + Mgc4c8 + Uw  pL/2  S1 Y- V Y  -L/2 Y 

(147) 
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and 

Ixx wx = 0 

I;z L3 I*(; - w w ) = - -  V 12 w + UWP 2 L s1 - UPwy 4 L2 s2 
YY Y x 2  Y 

Ii L3 V L L2 I* yy(;z + w w ) = - 7 w z  - w p  2 s1 - u p w z  4 s2 X Y  

M * = M + M  
V 

m L' 
I* = I  + -  V 
YY YY 12 

\ 
The  differential  equations  (147)  and  (1481,  together  with Eqs. 

(50) and  (51),  must  be  solved  simultaneously  to  obtain  the  po- 

sition  and  orientation  of  the  missile  as  a  function  of  time. 

Before  turning  to  the  elastic  motion  of  the  missile,  some 

mathematical  preliminaries  are  in  order  and  these  deal  with  the 

solution of the  boundary  value  problems. The  solution  is  possi- 

ble  by  means  of  modal  analysis,  provided  the  mass  m is constant. 

This,  of  course,  is  not  the  case  but  let us assume  for  the  mo- 

ment  that it is. The  modal  analysis  amounts to solving  the 

eigenvalue  problem  associated  with  the  constant  mass  system, 

obtaining  the  so-called  normal  modes,  and  expressing  the  system 



response  as  a  superposition  of  the  normal  modes  multiplied  by 

corresponding  generalized  coordinates;  such  a  solution  is  re- 

ferred  to as  normal-mode  vibration.  Because  the  actual  boundary- 

value  problem  possesses  time-dependent  coefficients,  however, 

no  normal-mode  vibration  is  possible.  Nevertheless,  by  virtue 

of  the  uniform-burning  assumption, it turns  out  that  a  proced- 

ure  based on  the  normal-mode  approach  can  be  used  here  to  ob- 

tain  sets  of  ordinary  differential  equations  which  are  far 

simpler  to  solve  than  partial  differential  equations.  But, 

because  the  normal  modes  imply  a  physical  behavior  which  the 

actual  system  does  not  possess, we  shall  regard  the  solution  as 

a  superposition  of  eigenfunctions  associated  with  the  constant- 

mass  system,  rather  than  superposition  of  normal  modes. To 

this  end we will  assume  that 

where qrr nrr K are  generalized  coordinates  and ur and vr are 

certain  functions  representing  the  normal  modes. To obtain pr 

we  consider  the  eigenvalue  problem  consisting  of  the  differential 

equation 
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over  the  domain  -L/2 < x < L/2  and  the  boundary  conditions 

p' (L/2) = p'(-L/2) = 0 (152) 

where  primes  denote  differentiation  with  respect  to x. 

The  eigenvalue  problem, Eqs. (151)  and  (152),  corresponds  to 

the  axial  vibration  of  a  uniform,  constant  mass  bar  with  both 

ends  unconstrained.  The  solution  of  the  problem  can  be  shown 

to consist  of  the  denumberably  infinite  set  of  eigenfunctions 

(see,  for  example,  Reference 19, pp.  151-154) 

pr = V2/moL  cos  rr  (x/L-1/2) r = 1,2,3 ,--- (153) 

and  the  eigenvalues 

fir = rn \I EAc/mOL 2 

The  eigenfunctions  are  orthogonal  and,  in  addition,  they  are 

normalized so as to satisfy  the  relation 

m pr(x)  ps(x)dx = 6rs,  r,s = 1,2,3,---  (155) 

where 6rs is  the  Kronecker  delta.  The  eigenfunction  correspond- 



ing  to r = 0 represents  the  rigid-body  mode p o  = and 

the  associated  eigenvalue  is  zero, Qo = 0, as  is to  be  expected 

for  a  semidefinite  system. It is  easy  to  see  also  that p o  is 

orthogonal  to  the  eigenfunctions ps (s  = 1,2,3, ---). 

Similarly,  to  obtain vr we consider  the  eigenvalue  problem 

for  transverse  vibration  of  a  uniform  beam  comprising  the  dif- 

ferential  equation 

EIc v 2 
= A mov 

1111 

(156 1 

and  the  boundary  conditions 

11 

v = v  
II I 

= 0 at x = - L/2,  L/2  (157) 

The  solution to this  problem  (also  given  in  Reference 19, Sec- 

tions  5-10  and  10-5)  consists of the  denumberably  infinite set 

of  eigenfunctions.  They  can  be  shown  to  have  the  expressions 

COSB x ( cos BrL/2 r +  r = 1,3,5, --- 

v =  r (158) 
sinB x r + sinhBrx ) r = 2,4,6, --- sinhBrL/2 

where  the  eigenvalues  are  found  by  solving  the  equation cosBrL- 

coshBrL = 1, or  equivalently 
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f3 rL 'rL tan - + tanh - - - 0 1: = 1,3,5, --- 2 2 

BrL rL tan - - tanh - - - 0 r = 2,4,6, --- 2  2 

in  which 
'I 

4 - *: mo 
'r - 

movr (x) vS (x)dx = 6 r,s = 1,2,3, --- rs (161) 

It may'be noted  that  two  rigid-body  modes  exist  and  it  is  not 

difficult  to  show  that  they  are  orthogonal  to  the  remaining 

eigenfunctions. 

(a) Axial Vibration  of  a  Rocket. 

Using  the  above  assumptions,  and  the  aerodynamic  forces 

of  Section 6, we may  write Eq. ( 8 3 )  as 
2 

a ux 
ax 

EAc - - 2 qSrcx  (Ma, L/2)  6 (x-L/2)  - qSrcx  (Ma, -L/2) 6 (x+L/2) +mg i 
" - 

- w )u - (x+ux) ( w 2  + wz) 1 - Px16 (x+L/2)+Px26  (x-L/2) 2 
X Y  Y Y 

(162) 



with  the  boundary  conditions 

In Eq.  (162)  the  forces  Pxl  and Px2  are  given by  the  expression 

and  they  represent  forces  due  to  internal  fluid  flow  and  thrust. 
f L/2 

In  Eq. (164) I M is the  total  mass Mo = 

the  burning  rate.  We  may  now  insert  expressions  (150)  in  Eq. 
0 \-L/2m0 dx and B is 

(162)  with  the  result 
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,using Eq. (151),  multiplying Eq. (165) by u s ,  integrating  along 

the  missile,  and  using  the  orthogonality  conditions, we  obtain 

1: = 1,2,3, --- (166) 

which are subject to the  initial  conditions 



(b)  Transverse  Vibration  of  a  Rocket. 

Consider  the  differential  equation  for  vibration  in  the 

xy-plane.  Assuming  constant  stiffness, I = Ic2 - - IC, neg- 
CY 

lecting  Coriolis  forces  (see  Reference  18,  page  141,  and  using 

Eq. (97), we write Eq.  (85)  as 

4 
a u  a au - E I ~  + - ax (P 2) + mg-j - m u+; + w  u - w  w 
ax r” V [ x Y Z  = Y  I[ 2 

- w (x+ux) - w w (x+ux) - w w u - (wx + w2)uy 2 
2 X Y   Y = z  2 1  

- p 6 (x-L/2) - P 6 (x+L/2) Yl Y2 

in  which we introduced  the  notation 

m * = m + m   = m   + m   + m  V C f V (169) 

and P and P are  aerodynamic  forces  produced  by  the  changes 

in the  cross-sectional  area at the  forward  and  aft  ends  of  the 

missile,  respectively.  Their  form  will  be  developed  shortly. 

Yl Y2 

Using  expressions  (150)  as  well  as Eqs. (156)  and  (81) , 
multiplying  the  resulting  expression  by v integrating  along 

the  missile,  and  using  the  orthogonality  conditions, we  obtain 
S’ 
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mv 
mO 

v{ V; V I  dx + - r m p'v dx O s r  
s t  

m L/2 
- w K 1 mopsv);lvrdx + x t  

O s t  -L/ 2 S 

- W z Q s )  uzqt m v p ' v d x - 2 - W K  O s t r  m x r  
m* 

0 

r = 1,2,3, --- (170) 

which  are  subject  to  the  initial  conditions,  Eqs.  (167). 

The  transverse  boundary  forces P and P arise  from 

aerodynamical  effects  and  can  be  obtained  from Eq. (97).  They 

are  simply  the  definite  integrals  of  the  last  term  in Eq. (97) 

Yl  Y2 



with  proper  integration  limits.  The  forward  portion of the 

missile  is  assumed  to  consist  of  a  cone  starting  at  x = L/2 

and  ending at  x = xn at  which  point  r(xn) = r*.  Hence 

so that 

S r 

(173 1 

The  aft  force, P is  found  in  a  similar  manner.  Because 
Y2 

the  equivalent  area  for  the  finned  region  is 

2  r 2 r  + + ,  x < x <  -L/2 
4 

s = 7 F  ( 1 “  
s. S 

r -  - 



and  since r = r*  is  constant,  whereas s is  the  variable, we 

obtain 

- dS = 28 ( s  - -1 r4 - ds 
dx 3 dx 

S 

Let s increase  linearly  from s = r*  to s = s * ,  where s* is  the 

distance  from  the  center  line of the  missile to the  tip  of  the 

fin  at  its  aft  end, so that 

s = ( + g ) x +  x r s*-r*L/2 
x - L/2 r 

(176) 

in  which  xr  is  the  position  from  the  origin  along  the  missile 

axis  to  the  point  where  the  fin  begins.  Hence 

" ds - s* - r* 
dx xr - L/2 

and Eq. (175) becomes 

s*-r* r s*-r* x  s*-r*L/2 
" 

dx x -L/2 r r 

r 
+ x  -L/2 r 

(177) 



. . . .. .. .. . . . . - . .. . 

s*-r* r 
r 

x s*-r*L/2 

x - L/2 + 

s*-r* 

x .s *-r*L/2 
+ r 

x -L/2 (2s*-r*) 
r 

F o r  v i b r a t i o n   i n   t h e   x z - p l a n e ,  w e  u s e   t h e  same technique 

as   above  and  obtain  the  equat ion for  K~ i n   t h e  form 

m L/ 2 

s t  -L/2 S -L/2 

dx - 2 m I J w  zqs 1 m p ' w  dx 
o y  O s r  



w 

-L/ 2 

- P z 2  v r ( - L / 2 )  = 0 r = 1,2,3, --- 

where   t he   i n i t i a l   cond i t ions ,   Eqs .  (167), apply  and 

S r 

S r 

-./ 
p T (s*-r*) (2s*-r*) + r* c 1 

P z 2  = - 

r 
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9. Results 

Since  no  closed  form  solution  for  the  coupled  nonlinear 

differential  equations of the  previous  section  seems  possible, 

the  equations  for  both  the  rigid  and  elastic  motion  were  solved 

numerically on  an IBM 360/65  computer. In  seeking  numerical 

solutions  to  differential  equations,  it  is  frequently  more  ad- 

vantageous  to  work  with  first-order  rather  than  second-order 

differential  equations.  Given  the  n  second-order  equations 

introduce  the  auxiliary  variables 

so that  we  can  replace  Eqs. (183) by  the  2n  first-order  equations 

i = 1,2,--- I n  (185) 

z  i = fi(Y11Y2""fYnr~lf~2r-" I zn I t) 

We  have  now  obtained  a  system  of  equations  whose  solution  con- 

sists  of  n  coordinates  and  n  velocities.  Of  the  2n  equations 

the  first  n  are  purely  kinematical,  whereas  the  remaining n 

equations  result  from  the  dynamical  laws  governing  the  motion, 

as  reflected  by  Eq.  (183). For  a  discussion  of  this  type  of 
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formulation,  as well  as  ones  involving  coordinates  and  momenta 

instead  of  coordinates  and  velocities,  see  Reference  27,  pages 

91 through  97. 

The  technique  described  above  is  used on the  differential 

equations  of  the  previous  section  to  obtain  a  set  of  first- 

order  differential  equations.  These  are  then  solved  numerically 

by means  of  a  fourth-order  Runge-Kutta  formulae  with  the  modi- 

fication due to  Gill.  This  method  is  described  in  Reference 28. 

An IBM supplied SSP subroutine RKGS is  then  used  for  solving 

these  equations.  This  subroutine  as  well  as  the rest of  the 

computations  necessary  for  solving  the  differential  equations 

was  written  for  the  computer  in  the FORTRAN IV ( G  level)  langu- 

age  (see  Appendix B) . 
The  constants  which  were  used  to  describe  the  missile  were 

E = 30 x 10  psi, L = 100  in.,  Ac = 7.53 in 6 2 

mog = 4 . 2 5  lbs/in,  mcg = 0.5 lbs/in/sec,  IC = 9 3  in 4 

v(xe,t) = 1000 ft/sec, wx = 0 rad/sec,  Sr =   IT in 2 

The  initial  conditions  used  were 

X ( 0 )  = Y ( 0 )  = Z ( O )  = O ft, U ( 0 )  = v ( O )  = ~ ( 0 )  = O ft/sec 

w (0) = w z ( 0 )  = 0 rad/sec, $ ( O )  = I$ (0) = 0 rad. Y 

e ( 0 )  = 90 deg.  ux(x,O) = uz(x,O) = 0, ft. 
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(x,o) = 10 -6 (.cosax/~-2/a; + 0.5~10-~(sin 21~x/L-6x/aL)  ,ft 
Y 

In computing  the  density we assume  an  exponential  atmos- 

phere of the  form 

P = P  exp  (-x/23,500) 0 

= 2.7~10 exp(-x/23,500) -3 

in  which p 0  is the  sea  level  density  and x is  the  altitude 

above  sea  level. 

The  axial  coefficient  has  the  general  shape  shown  schema- 

tically  in  Figure  8  (see  for  example  References  29  and  30). 

We  assume  these  curves to be  approximated  by  polynomials of 

the  form 

cx = 7 [9cx1 + 27  cx1/3 
1 3 1  

- 27 Cx2/3]Ma - 2' CgCx1 -+ 45 cx1/3 

- 36 'x2/3] Mz + r2 c ~ l  + l8  cx1/3 - cx2/3] Ma 

+ cxo O < M a ~ l  - 

1 (Ma ( 6  



where  c 

values  for  the  coefficients at Ma = 1, Ma = 1/3,  etc. The  same 
xl'  x1/3' C etc. represent  experimentally  determined 

type  of  curve  is  used  for  both  the  forward  and  the  aft  part  of 

the  missile,  the  difference  being in the  constatns  used. For 

the  nose we use  (References 29 and  30) 

cxo = 0.2 , cx1/3 = 0.2 , c - 0.2 , c = 0.55 x2/3 - x1 

c = 0.4 , cx3 = 0.24 , c = 0.2 x2  x6 

While  for  the  aft  portion we use 

c = 0.05 , cxlI3 x0 = 0.1 , cx2/3 - - 0.15 , 

c = 0.2 I cx3 x2 = 0.15 , cx6 = 0.1 

Of  current  interest  is  the  fluctuations 

CXl = 0.4 

of  the  chamber 

pressure  and  their  effect  on  the  elastic  motion  of  the  missile. 

Various  types  of  pressure-time  histories  may  be  used  such  as, 

for  example,  a  step  function  which  was  used  in  References  13 

and  15. A schematic  representation  of  an  actual  pressure-time 

history  as  well  as  a  step  function  is  shown  in  Figure  9a.  We 

assure  that  this  curve  may  be  approximated  by a curve  which 

represents  the  response  of  a  second-order  system  to  a  step 

applied at time t = 0. Hence,  we  write 
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pL - pLss 
- c 1 + e-5wt ( '5  sinwdt - coswdt) 

11-52 1 
in  which 

In  Eq.  (1861, PLss is  the  steady  state  value of the  pressure, 

5 is  the  damping  ratio, w is  the  natural  frequency of the  system. 

We  assume  that  the first two  variables  have  the  numerical  values 

pLss = 1000.  psi , 5 = 0 . 4  

We  choose  several  values  for w and  these  correspond  to 

1: a  period  of  0.0001  seconds w = 2lr/0.0001 

- 
2: the  first  axial  frequency w = ~ ( E A ~ / ~ ~ L  2 

3: the first  transverse  frequency w = (1.506~) 1 EI/moL 4 

The  pressure-time  history  for  the first two  cases  'are  shown  in 

Figure 9b. 

Using  the  above  constants,  variables,  and  inital  conditions, 

Figure  10  shows  the  resulting  graph  for  the  rigid-body  motion 

with  and  without  aerodynamic  forces. As expected, at a  given 

period  in  time,  the  missile  travels to a higher  altitude  without 



aerodynamic  forces  than  with  aerodynamic  forces. 

Figure 11 shows  two  resulting  elastic  motions, one  due to 

a  pressure-time  history  assumed  to  be  a  step  as  in  References 

13 and 15 and  the  other  case 1 listed  above.  Figure 12 shows 

the  elastic  motions  for  cases 2 and 3 .  

In comparing  the  curves  in  Figures 11 and 12, there  are 

noticeable  differences  in  the  various  cases  considered,  which 

indicates  that  internal  pressure  may  be  a  significatn  parameter 

influencing  the  elastic  motion  of  the  missile.  Considered  here 

is  only  one  type  of  approximation  to  the  pressure  which  approaches 

a  constant  fairly  rapidly.  Thereafter  the  pressure  remains 

constant  without  any  fluctuations.  It  is  to  be  noticed  that, 

although  the  steady  state  value  for  the  pressure is of  the  same 

magnitude,  the  cycle  times  for  the  elastic  motion  are  not  the 

same  for  all  cases  considered.  This  may  be  attributed  to  the 

frequency  associated  with  the  pressure  fluctuations.  Hence, 

the  pressure  acts  like  a  forcing  function and, if  the  fluctu- 

ations  are  sufficiently  violent,  the  missile  structure  may  fail 

due  to  excessive  loading. 

Another  interesting  phenomenon  appears  due  to  the  pressure 

fluctuation  and  this  is  the  fact  that,  unlike  previous  analysis, 

axial  compression.  also  takes  place.  This  may  be  accounted  for 

by recalling  that  in  the  present  case  a  finite  time  is  necessary 

for  the  pressure  to  build  up  in  the  combustion  chamber.  During 

this  time  the  thrust,  assumed  to  attain  its  magnitude  immediate- 

ly,  acts at the aft end so as  to  push  the  missile.  Hence, 
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compression  results  there  until  the  pressure  inside  the  combus- 

tion  chamber  is  sufficient to counteract  this  thrust  force. 

As there is no damping  in  the  axial  direction,  compression  may 

appear  again  during  the  next  cycle of its  motion. 

Although not obvious  from  the  graphs,  the  transverse  motion 

is  affected  by  the  pressure-time  history. The  reason  that  these 

effects  are  not  obvious  is  that  the  differences  between  the  dif- 

ferent  cases  are  too  small to show  on  the  graphs. 

10.  Summary  and  Conclusions 

The  present  work,  written  in  two  parts,  considers  first 

the  general  formulation  of  a  two-stage  variable-mass  flexible 

missile.  This  formulation,  based on  work  done  in  References 

13  and 14,  which  considers  as  its  basis  a  single-stage  missile, 

represents  a  logical  extension  and  shows  the  versatility  of  its 

formulation. The mathematical  formulation  is  reduced  to  six 

ordinary  differential  equations  for  the  three  rigid-body  trans- 

lations  and  three  rigid-body  rotations,  3n  ordinary  differential 

equations  representing  the  motion  of  the  n  discrete  masses  as 

well  as  three  partial  differential  equations  with  corresponding 

boundary  conditions  for  one  longitudinal  and  two  transverse 

elastic  displacements.  The  equations are  nonlinear  and  possess 

time-dependent  coefficients  due  to  the  mass  variation.  At 

present  the  resulting  equations  do  not  appear  to  lend  themselves 

to  a  solution  other  than  by  numerical  techniques,  such  as  those 

presented  in  Reference  16. 



Special  interest  lies  in  a  single  stage  variable-mass 

flexible  rocket  with  no  discrete  masses. A reasonable  assumption 

is  that  the  elastic  displacements  do  not  affect  the  rigid-body 

motion  appreciably.  Under  this  assumption,  the  rigid-body  motion 

can  be  solved  independently  of  the  elastic  motion.  The  equations 

for  the  rigid-body  reduce  to  the  familiar  case  of  a  six-degree- 

of-freedom  rigid-body,  possessing  variable  mass, and  subjected 

to  forces  due  to  engine  thrust  as  well  as  aerodynamic  forces. 

If  the  mass  distribution,  as  well  as  the  rate  of  decrease  of 

mass,  is  assumed  to  be  uniform  along  the  missile,  then  the  mass 

center  does  not  shift  relative  to  the  vehicle. 

For  zero  viscosity,  the  equation  for  the  internal  gas  flow 

can  be  separated  from  the  equation  for  the  longitudinal  elastic 

displacement.  The  gas  flow  problem  is  one of a  steady  adiabatic 

flow  in  a  channel of uniform  cross-sectional  area  to  which  mass 

is  added  continuously at  constant  enthalpy  and  negligible  kinetic 

energy.  The  solution  to  this  problem  leads  us  to  forces  applied 

at the  boundaries,  namely  the  closed  end  and  the  nozzle  end. Due 

to  the  aerodynamic  forces,  coupling  exists  between  the  axial  and 

transverse  elastic  motion. Hence, the  problem  consists  of  solv- 

ing  three  nonhomogenous  coupled  partial  differential  equations 

with  homogenous  boundary  conditions. A solution  of  this  problem 

is  obtained  in  the  form  of  an  infinite  series  of  eigenfunctions, 

associated  with  a  constant-mass  missile  free  at  both ends,  multi- 

plied  by  time-dependent  generalized  coordinates. A procedure 

resembling  modal  analysis  then  leads  to  a  set  of  coupled  ordinary 
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differential  equations.  This set of  equations  as  well  as  the 

rigid-body  equations  of  motion  are  then  solved  using  a  high- 

speed  digital  computer. 

In conclusion,  a  general  treatment  for  a  two-stage  flexible 

missile  is  treated  under  a  new  unifying  formulation.  Vehicle 

flexibility  and  mass-variation  as  well  as  aerodynamic  force 

and  discrete  masses  are  included.  This  formulation  is  then 

used  on  a  simplified  single-stage  missile  and  results  illustrat- 

ing  the  effects  of  pressure  fluctuations on the  elastic  motion 

of  a  flexible  missile  are  presented. 
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Appendix A - Calc'ulations - - 0.f  the Engine  Thrust 

The  purpose  of  a  nozzle  is  to  convert  the  enthalpy of the 

flowing  gas  into  kinetic  energy  in  an  efficient  manner  while, at 

the  same  time,  restricting  the  escape  of  the  gas to a  rate  suit- 

able  for  the  propellant  reaction  inside  the  combustion  chamber. 

We  shall  assume  that  the  nozzle  under  consideration  is  convergent- 

divergent,  designed  tv  allow  an  isentropic  expansion  to  an am- 

bient  pressure  less  than  critical. In the  convergent  portion 

of  the  nozzle,  before  the  throat,  the  flow  is  subsonic,  reaching 

sonic  level  at  the  throat  section, at which  point  the  flow  pro- 

perties  are  referred  to as critical, and  becoming  supersonic  in 

the  divergent  portion  after  the  throat.  Although  losses  may 

occur  in  the  nozzle,  they  are  assumed  to  be  small so that  the 

analysis  is  based  on  the  equations  for  one-dimensional  isen- 

tropic  steady  flow of a  compressible  perfect  gas. 

Let us consider  the  one-dimensional  isentropic  flow  of 

Figure  A1 and  assume  that  the  stagnation  conditions,  denoted  by 

the  subscript 0, are  known.  Under  these  circumstances,  we  may 

write  the  equations  governing  the  flow  as  follows: 

First the flow  must  satisfy  the  first  law  of  thermodynamics. 

Considering  the  control  volume  shown  in  Figure Al, and  denoting 

the  enthalpy  per  unit  mass  by h, this  law  can  be  stated 

ho = hl + 1 v2 = h2 + v2 1 2  
2 1  (A1 1 



A s s u m j r l g  that  there  is  no  friction or heat  transfer  present, 

the  second law of thermodynamics  becomes  simply 

s = s = constant 0 (A2 1 

or  the  entropy s is  constant,  as  implied  by  the  name  of  the  type 

of  flow  under  consideration. 

The  flow  must  also  satisfy  the  continuity  equation.  Since 

there  is no  mass  addition  within  the  nozzle,  we  must  have 

p lAl~l = p 2A2~2 = constant (A3 1 

where  the  flow  properties  at  stations 1 and 2  are  denoted  by  the 

corresponding  subscripts. 

Similarly  the  flow  must  satisfy  the  momentum  equation. 

Denoting  the  force  exerted by  the  nozzle wall on the  gas  by FT, 

this  equation  can  be  written 

2  2 FT = plAl - p2A2 = p A v 2 2 2 - P A v   1 1 1  (A4 

Equations  (Al)  through (A41 must be  supplemented  by  the 

equation  of  state  which  for  a  perfect  gas  has  the  form 

p = pRT  (A5 1 

in  which R is  the  universal  gas  constant  and  T  the  temperature. 



The  above  relations  can  be  used  to  derive  expressions  for 

the  pressure,  density,  etc., at any  point  along  the  nozzle. 

For  a  perfect  gas  the  speed  of  sound  is  given  by 

where 

k = cp/cv 

in  which  c  and cv are  the  specific  heats.  Then  the  following 

relations  can  be  shown  to  hold  true.* 
P 

" T -  1 
m 

"O 1 + [(k-1)/2]M2 

E= 1 
i l  + [(k-l)/2]M 2 1 k/(k-1) 

where  M = v/c  is  the  Mach  number. Moreover,  the  cross-sectional 

area A at any  point  is  related  to  the  cross-sectional  area A, 

at  the  throat by 

* See  Reference  17,  Section  13-5. 



where 

G = pv 

is  the  mass  flow  per  unit  area at any  point  and 

is  the  mass  flow  per  unit  area  at  the  throat. 

Equations ( A 8 )  through  (A131  are  sufficient  to  determine  the 

isentropic  flow  in  the  nozzle  provided  the  stagnation  condi- 

tions  are  known.  We  are  interested  primarily  in  the  flow  con- 

ditions at the  nozzle  exit.  For  a  given  rocket  design  the 

cross-sectional  areas  A  and A, may  be  regarded  as  known. 

Since  k  is  also  a  known  quantity, we can  use  Eq.  (All)  and 

obtain  the  Mach  number  Me  at  the  exit.  Introducing  this 

value  into  Eq.  (A9) we  can  determine  the  exit  pressure per 

which  enables  us  to  write  the  expression  for  rocket  thrust 

e 

FT - - peAe + p A  v2 = p A (1 + k Me) 2 
e e e   e e  (A14 

for  flight  in  vacuum. If the  rocket  operates  in  the  lower 

fringes  of  the  atmosphere,  then  the  term  paAe,  where  p  is 

the  atmospheric  pressure,  must  be  subtracted  from  the  right 

side  of  Eq.  (A14) . 
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In the  above  analysis,  we have-assumed that  the  stagna- 

tion  conditions  are  known.  This  assumption  necessitates  fur- 

ther  scrutiny.  The  stagnation  conditions  are  determined  by 

events  occurring  upstream  of  the  nozzle.  The  flow  in  the 

combustion  chamber  may  be  regarded as a  steady,  adiabatic 

flow  in  a  channel  of  uniform  cross-sectional  area  with  mass 

addition  at  constant  enthalpy,  and  at  negligible  kinetic  en- 

ergy.  The  flow  is not isentropic  and  the  stagnation  condi- 

tions  are  not  constant  but  decreasing  as  the  nozzle  is  ap- 

proached.  This  problem  is  discussed  in  detail  in  Reference 

11. The  conclusion  that  can  be  reached  is  that  for  a  Mach 

number  less  than 0 . 4  in the  combustion  chamber  the  drop  in 

the  stagnation  pressure  may  not  be  significant. Hence,  we 

shall  assume  that  the  stagnation  pressure  as  well  as  the  re- 

maining  stagnation  conditions  occurring  at  the  fore  end of 

the  combustion  chamber  are  equally  applicable  to  the  nozzle. 

In a  more  refined  analysis of the  gas flow this  assumption 

may  have  to  be  revised. 



Appendix B 













94 



95 

I s  





97 





RKGS 10 

RKGS 3 0  
SUBROUT I N S  RKGS RKGS 40 

RKGS 50  
PtJRPnSf RKGS 60 

T O  S O L V E  A SYSTEM !IF F I R S T   O R D E R   O R D I N A R Y   D I F F E R E N T I A L  P.KG!i 73 
E Q U n T I n h l S   W I T H  G I V E N  I N I T I A L  V4LUE.S.  RKGS RO 

RKGS 90 
USAGE  RKGS 100 

P4RAYETERS  FCT  AND DUTP RECJIIIRE AN EXTERNAL  STATEMENT.   RKGS 120 
RKGS 130 

D E S C R I P T T O N  OF PARAMETERS  RKGS I LC1 
PRMT - A N   I N P U T   A N D   O U T P U T   V F C T O R   W I T H   D I M E N S I D N   G R E A T E R   R K G S  1 5 0  

OR EQUAL  TO 5 1  WHICH S P E C I F I E S   T H E   P A R A M E T E R S  OF PKGS I60 
T H E   I N T E R V A L  AND OF ACCURACY  PND  WHICH S E R V E S  FOR FKGS 170 
C O M M U N I C A T I O Y   B E T W E E N   Q l J T P U T   S U R P O U T I N E   ( F U R N I S H E D   R K G S  180 
RY  THF !ISFR 1 AND S U R R O U T I N F  RKGS. E X C E P T   P R M T ( 5 I  RKGS I90 
THE  COYPONcNTS  APF  NOT  DFSTROYEO B Y  SlJBPOUTlNF  PKGS 20Q 
RKGS ANI?  T H E Y  A 9 E  RKGS 210  

. . . . . . . . o . = . . . . . . . . . o . . . . . o o . = . . . . . . = o . . o . . o o o . . . o . . o o * . o o . o . o o . = o R K G S  2 0  
- . - . . . , -. . . . 

C A L L   P K G S  ( P R M T T V ~ D F P V ~ N L ) I Y ~ I H L F T F C T ~ O ~ J T P T A U X ~  RKGS 110 

PP.MT ( 1  1 -  LOWER RI-IUND (?F T H E   I N T E R V A L  ( I N P U T )  9 PKCS 270 
P F k ' T ( 2 ) -  IJPPFR BOIJNO OF THC I N T E R V A L   ( I N P U T  1 ,  RKGS 230 
P P M T ( 3 ) -   I N I T I 4 L  IYCPEMFPJT OF  THE I N D E P E N D F K T   V A R I A B L E   P K G S  241, 

( IwuT), RKGS 2 5 0  
P R , M T ( 4 ) -  IJPPER  ERROR  BOUND ( I Y P U T ) .   I F   k f l S O L l J T E  E R R C R  I S  PKGS 760 

GRFATEP  THAN  PRMTI  4) T TNCREWFNT  GETS  HALVED.  PKGS 271! 
I F  I N C R E M F N T  I S  L E S S   T H A N   P R M T ( 3 )  AND ABSOLUTE  RKGS 2 8 0  

T H E   U S E 2  H A Y  C H A N G E   P R M T 1 4 )   B Y   M E A h S  OF H I S  PKGS 3 0 0  
O U T P U T   S U R X r l U T I N F .   R K G S  310 

P R Y T ( 5 1 = @ .  I F  T H F  USE?  WANTS  TO  TERMINATE  RKGS 3 3 0  

ERROR L F S S   T H A N   P R M T (  6 1 / 5 0 ,  INCREMENT  GETS  DOUBLED.  RKGS 290 

p P v T ( 5 ) -  NO I N P U T   P A R A M F T F P .   S U R R O l . l T I N I <   P K G S   I N T T I A L I Z F  5 RKGS 3 2 0  

S IJREOUTINE R K G S  A T  ANY OlJTPIJT  POIlr lTT  HE 'HAS TO RKGS 3 1 0  
C H A N G E   P R M T ( 5 )  TCI Nr lN-ZFRI1  B Y  M E A N S  OF SURROUTINE Q K G S  3 5 0  
OUTP.  F lJcTHEP  CCIMPONFNJS OF VFCTOH PRMT  ARE  RKGS 3 6 0  

T H I N  5 .  HOWFVEK  SUBQOUTINE  RKGS D O F S  N O T   R F Q U I R E  RKGS ? R O  
A N I )  CHANGE THFM. N E V F R T H E L E S S  THEY PAV B E   U S E F U L  RKGS 190 
FOR HANDING  RFSUL T V A L U E S  TI! T H E   M A I N  PROGRAM PKGS 400 
( C A L L I N G   R K G S )   W H I C H  A q E  D B T A I N F O   B Y   S P E C I A L  RKGS 410 
M A N I P U L A T I O N S   W I T H   O U T P U T  DATA T N  SURRCUTINE  OUTP.  R K G S  4 2 0  

Y - YNPIIT V';CT!3R O F   . I Y   I T I A L  VACI1F.S. ( D E S T R O Y E D )   R K G S  43Cl 
L.hTERf lN Y I S  THE K E S U L T I Y G   V E C T O R  CF DEPENDENT  RKGS 440 
V A R I A B L E S  CCJMPIJTEO A T  I N T E R M E D I A T E   P O I N T S  X. PKGS 450 

THE SUM OF I T S  COMPONFNTS  MUST B F  E C U A L   T C  1. RKGS 470 
L A T E R f l N  D F R Y  I S   T H E   V F C T O R  OF D E R I V A T I V E S -  W I C H  RKGS 480 
B E L O N G   T O   F U N C T I V K   V A L U F S  Y AT A P G I N T  X. RKGS 490 

E Q U A T I O N S  I N  THE  SYSTEM.   RKGS 51.0 

B I S E C T I O N S  l3F T H E   I Y I T I A L   I N C R E M E N T .  I F  I H L F  G E T S  RKGS 530 

F E A S I R L C  I F  I T S  D I M E f J S I O N  I S  R E F I h E D   G R E A T E R   R K G S  370 

D E R Y  - I N P U T   V C C T C R  OF ERROR  WFIGHTS.   (PESTROYED)   RKGS 460 

N D I M  - 4N I N P U T   V A L I J ? ,   W H I C H  SDFC'I F I E  S THE  NlJMBER  CF  RKGS 500 

I H L F  - AN OIJTPIJT   VAClJEr   kH ICH S P E C I F I F S  THE  NUMBER C f  RKGS 520 

99 





10 1 



RKG SI. 60. 
RKGSLb! . I  
R K G S l h i l t  
R K G S 1 6 3  
RKGS 1641 
RKGS165 
R.KGS 166 
P K G S 1 6 7 1  
RKG SI 68  
RKGS ?. 691 
R K G S 1 7 0 (  
R K G S 1 7 1 :  
P K G S l 7 2 (  
P K G   S 1 7 3 1  
RK GS 174i 
R K G S ? 7 5 (  
R K G S 1 7 6 1  
R K G S I . 7 7 t  
R K G S l 7 R l  
RKGS 179( 
R K G S L R O (  
R K G S I . 8 1 .  
QKGS 182(  
RKGS1831 l  
RK G S l 8 4 1  
R K G S 1 8 5 (  
R K G  SI 861 
RKGS 187( 
R K h S 1 8 8 r  
RKcJ S 1891 
R K G S 1 9 0 (  
RKG SI 91 1 

RK GS 19 2( 
RKGS193( 
R K G S  1941 
RKGS 19 51 
R K G S I 9 6 c  
RK GS 197: 
PKGS'L98C 

RKGS 200 
PKGS2016 
R K G S 2 0 2 1  
R K G S 2 0 3 C  

P K G S 2 0 5  

R K G S 2 0 7  

RKGS20El R K G S 2 0 9  
P K G S 2 1 0 4  
P K G S 2 1 1 C  
R K G S Z l Z 4  
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R K G S 2 1 3 U  
R K G S 2 1 4 O  
RKG S2150 
RK GS 2 160 
RKGS23.70 
R K G S 2 1 A O  
R K G S 2 l . 9 0  
R K G S 2 2 0 0  
R K G S 2 2 1 0  
R K G S 2 2 2 0  
RKG 52230 
R K G S 2 2 1 0  
RKGS.22 50 
RKG S 22 60 
R K G S 2 2 7 0  
RKGSZZRO 
R K G S 2 2 9 0  
R K G S 2 3 0 0  
R K G S 2 3 1 0  
R K G S 2 3 2 0  
R K G S 2 3 3 0  

P K G S 2 3 5 0  
RKG S 2 3 h 0  
R K G S 2 3 7 0  
RKGS23AO 
R U G S 2 3 9 0  
RKGS 2400 
R K G S 2 4 1 0  
P K G S 2 b 2 0  
F K G S 2 4 3 0  
PKG 5 2 4 4 0  
RKGS 2 4 5 0  
R K G S 2 4 6 0  
R K  GS 2479 
RKGS34RO 
R U G S 2 4 9 0  
RK GS 7 500 
R K G S 2 5 1 0  
R K G S 2 5 2 0  
R K G S 2 5 3 0  
R K G  S2 540 
R K G S 2 5 5 0  
F K G S 2 5 6 0  
R Y G S 2 5 7 0  
RKGS75RO 
R K G S 2 5 9 0  

P K G S Z ~ ~ ~ J  
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Figure I - The Control Volume 
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Figure  2 - Noninertiol  Control Volume 
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Figure  4 - The   Rocket   E lement  of 
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Figure 5 - Inertial and Moving Coordinate  Systems 
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Figure  6 - Coord inate   Systems  for   the   Rocket  
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Figure 8 - Axial Coefficient vs. Mach Number 
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